Modeling for the Evaluation of Strength and Toughness of High-performance Fiber Reinforced Concrete

نویسنده

  • P. RAMADOSS
چکیده

This paper presents the multivariate linear models for the evaluation of compressive, flexural and splitting tensile strengths, and toughness ratio of high-performance steel fiber reinforced concrete (HPSFRC). In this study, 44 series of concrete mixes with varying silica fume replacement and fiber dosage (Vf = 0.0, 0.5, 1.0 and 1.5%) were considered. Test results indicated that addition of fibers into silica fume concrete improves the compressive strength moderately and tensile strengths significantly. Based on the test results of 144 specimens, multivariate linear regression models were developed for the prediction of 28-day strength and toughness properties of HPSFRC and the absolute variations obtained are 1.09%, 2.36%, and 3.36% for compressive, flexural, and splitting tensile strengths, respectively. The validity of the proposed models was verified with the test data of earlier researchers. The proposed models were shown to provide results in good correlation with experimental results. The predicted values were also analyzed at significance level of 0.05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Behavior of Hybrid Fiber Reinforced High Strength Concrete with Graded Fibers

Brittleness, which was the inherent weakness in High Strength Concrete (HSC), can be avoided by reinforcing the concrete with discontinuous fibers. Reinforcing HSC with more than one fiber is advantageous in an overall improvement of the mechanical performance of the composite. In this experimental study, Hybrid Fiber Reinforced High Strength Concrete (HyFR-HSC) mixes were formed by blending si...

متن کامل

Hybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin

Fiber reinforced concrete (FRC) has been widely used due to its advantages over plain concrete such as high energy absorption, post cracking behaviour, flexural and impact strength and arresting shrinkage cracks. But there is a weak zone between fibers and paste in fiber reinforced concretes and this weak zone is full of porosity, especially in hybrid fiber reinforced concretes. So it is necess...

متن کامل

Strength and Toughness of Reinforced Concrete with Coated Steel Fibers

The effect of zinc phosphate (ZP) and zinc calcium phosphate (ZCP) coatings on the reinforcing mechanisms of smooth steel fiber in cementitious matrix have been studied. The results of pull out tests illustrated that by coating smooth steel fiber the pull-out load may be increased up to 100%. The effect of zinc phosphate coating on interface bonding was more than zinc-calcium phosphate coating....

متن کامل

Evaluation of Hybrid Fiber Reinforced Concrete Exposed to Severe Environmental Conditions

Hybrid fiber reinforced concrete (HFRC) consisting of two or more different types of fibers has been widely investigated because of its superior mechanical properties. In the present study, the effect of the addition of steel (0.25%, 0.5%, 0.75%, and 1% of concrete volume) and Polypropylene (0.2%, 0.4%, and 0.6% of concrete volume) fibers on the surface scaling resistance of concrete, depth of ...

متن کامل

Stepwise Regression for shear capacity assessment of steel fiber reinforced concrete beams

The addition of steel fibers into concrete improves the postcracking tensile strength of hardened concrete and hence significantly enhances the shear strength of reinforced concrete reinforced concrete beams. However, developing an accurate model for predicting the shear strength of steel fiber reinforced concrete (SFRC) beams is a challenging task as there are several parameters such as the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013